Quiz Answer Key and Fun Facts
1. In my family tree, my great-great grandmother gave birth to a set of twin sisters who each had a set of twins. I then found out that on two separate occasions, both of their two sets of twins each had two sets of twins twice. If this accounts for all of the children in my mother's family, how many children are in her generation? (how many share my mother's great grandmother, including her)
2. A hexagon is inscribed within a circle, within a square, within a circle, within a triangle, within a circle, within a square, within a circle, within a triangle, within a circle. If hexagon is inscribed within the largest circle, and all of the above polygons are regular, what is the ratio of the area of the larger hexagon to the area of the smaller hexagon?
3. I was 2/3 of the way to work when I realized that I had forgotten my lunch, so I turned around and headed home. When I was 2/3 of the way home from where I had turned around, I realized that I didn't need it because I had a lunch meeting, so I turned around and headed back toward work. When I was 3/4 of the way to work from where I had just turned around, I realized that I had forgot my briefcase. I turned around and went all the way back home. I averaged 60mph for the entire trip and had now wasted 90 minutes since I had originally left. If I drove the same route the entire time (switching directions three times), how many miles apart are the two places where I turned around to come back home?
4. My friend and I were gambling and he had lost all of his money. I had only lost 1/3 of my money, so I gave him half of mine. He then doubled his money, while I lost half of mine, so he then gave me half of what he had. He then lost half of his money, while I tripled mine. At this point I was ahead, but my friend wasn't doing well, so I gave him half of my money. He turned right around and said that he didn't need all of it, so he gave me back what I had originally loaned him plus $10 for loaning him money in the first place. If we now have $100 between us, who has more money and how much?
5. I have a farm where an accident occured (I won't go into it - it's horrible) and now, most of my pigs have lost their legs. I have chickens and pigs on my farm, and after the accident, the ratio of pigs to chicken legs is the same as the ratio of chicken legs to pig legs. Luckily, all of my chickens still have their legs. If there are three pig legs missing for each leg my chickens have, how many pigs do I have for each chicken leg?
6. You can generate a cypher by moving each letter 'x' number of places further in the alphabet 'x' number of times, where 'x' is it's numerical position in the alphabet. In that cypher, you would move A (the 1st letter) 1 letter further in the alphabet once, making it 'B' in the encoded cypher. You would move B 2 letters away twice, making it 'F' in the encoded cypher. You would move C three letters away three times, making it 'L' and so on...
What would be the result of the word "MONOPOLY" if you encrypted it, then encrypted the result, then encrypted the result, and so on until you had encrypted the encrypted result once for each letter in the word "MONOPOLY"?
7. The sum of the two digits in my age is the same as it was when my age was half of what it will be the next time that the digits of my age total the same as they do now. What is the total of the digits in my age?
8. I have three beakers, marked 'A', 'B' and 'C'. Beaker 'A' is 2/3 full of red liquid, beaker 'B' is 2/3 full of water, and beaker 'C' is empty. When the red liquid mixes with water, it immediately mixes completely, and the redness of the liquid is directly proportional to the ratio of red liquid to water in the mixture. I take beaker A and pour half of it into each of the other two beakers. I then pour half of the contents of beaker B into each of the other two beakers, and then I pour half of beaker C into each of the other two beakers. Then I pour off liquid from beaker A evenly into the other two beakers (half into each of beakers B and C) until beaker A has 1/3 of the total liquid left in it. I then pour from beaker B into beaker C until they, too contain 1/3 of the total liquid. Now each of the beakers has the same amount of liquid in it. Which beaker contains the reddest liquid?
9. After an interview in an office building in New York, I left the office and looked east out at the view of the Atlantic Ocean while waiting for the elevator. When the elevator opened, I turned around and walked into it. I took it down three floors, exited and turned left. I followed the hallway around two corners, turning to the left each time. I then headed down the hall a little way and stopped at the next bank of elevators on my right. I entered one of the elevators, took it down fifteen floors, exited the elevator and went straight across into another elevator that I took to the ground level. I then exited the elevator, turned left and went straight out the front of the building, where I caught a bus. I got on the bus, and the seats facing the door were taken, so I went up and sat facing out the front of the bus. The bus turned left and stopped, then turned right and then right again. It continued fourteen blocks and then turned left, where it stopped and let three people off, one of whom was sitting across from the door. I got up and took his seat. Then, because there is a median in the road, the bus then did a U-turn, went down one block and turned right. It continued on, turned left and stopped. What direction am I facing?
10. One dinner costs $7. Al, Ben and Carol decide to pool their money and get something to eat. With all of Al's money, 1/2 of Ben's money and 1/3 of Carol's money, they can each get a dinner. With 1/2 of Al's money, all of Ben's money and 5/6 of Carol's money, only one of them can get a dinner. With 2/3 of Al's money, 3/4 of Ben's money and all of Carol's money, they can only get two dinners. With 3/4 of Al's money, 1/3 of Ben's money and 1/2 of Carol's money, they still can only get two dinners. They decide on the first option, and decide to split the remaining money evenly. If none of them has any change (all of the money is in whole dollar bills), and each of the proposed fractions each of them would pay is also in whole dollar amounts, how many dollars do each of them wind up with once they split the remaining money evenly?
Source: Author
treefinger
This quiz was reviewed by FunTrivia editor
gtho4 before going online.
Any errors found in FunTrivia content are routinely corrected through our feedback system.