Quiz Answer Key and Fun Facts
1. Hydrogen is the simplest element in the universe, and, not coincidentally, it's also the oldest. In its most common form, what does a hydrogen atom consist of?
2. Some subatomic particles are composite -- that is, made of other particles -- and some are fundamental, meaning that they can't be broken down into components. Which of these things can be found in a hydrogen atom and is NOT a fundamental particle?
3. About a millionth of a second after the Big Bang, the universe was cool enough for the first composite particles -- hadrons -- to begin to form out of quarks, in a process that's absolutely essential to making hydrogen. But you need more than a (relatively) cool universe to make this work! Which of these things must ALSO be true for quarks to form hadrons and the universe as we know it to arise?
4. As the early universe expanded, it continued to cool. Around the ten-second mark, another important milestone was reached: temperatures dropped enough for nucleosynthesis, the binding of protons and neutrons to make atomic nuclei. Which of these nuclei, which began to form around this time, is actually an isotope of hydrogen?
5. Half an hour after the Big Bang, the young universe was filled with hydrogen nuclei and electrons, but it was still much too hot for the nuclei to capture the electrons and form stable, neutral hydrogen atoms. Light just bounced around in this plasma. Around the 378,000-year mark, though, atoms formed -- and the universe became transparent, with light finally able to travel long distances. The light from this time is stretched out and cooler now, but we can still see it. What do we call it?
6. As the young universe expanded and cooled, structures began to form out of the neutral hydrogen gas that filled it. Under the weak but persistent force of gravity, hydrogen and a few other gases coalesced into young proto-stars, and the energy of their compaction raised the local temperature so high that hydrogen nuclei could fuse into helium. Which of these terms describes stars that are powered by this kind of fusion?
7. The sun doesn't collapse from its tremendous gravitational pressure because that pressure is balanced by the energy produced in its internal fusion reactor. First, two hydrogen nuclei fuse into deuterium, which then fuses with another hydrogen nucleus to make helium-3. There are a few possible paths from this point, but most commonly two helium-3 nuclei fuse to make helium-4, with a couple of hydrogen nuclei left over to be used again. What is this process called?
8. Hydrogen is the most common chemical element in the universe, so mapping its distribution is a useful task for astronomers. In which of these places have scientists NOT seen evidence of hydrogen?
9. How do scientists figure out whether there's hydrogen in some faraway place? As you might expect, they use light to do it. Specifically, they take a look at the distribution of light from a source, determining how much of the light is at one particular wavelength compared to the amount of light at another wavelength. An astronomer can produce a kind of map showing the distribution of light over a whole range of wavelengths. What is this map called?
10. Many astronomers spend their careers measuring the 21-cm line, a narrow spectral line corresponding to the energy difference in two configurations of the neutral hydrogen atom. Light from this line has a wavelength of 21 cm -- but that isn't always the wavelength at which astronomers see it. If the source is moving relative to us, the observed wavelength will change due to the Doppler effect. What is it called when the source is moving away and the observed wavelength gets longer?
Source: Author
CellarDoor
This quiz was reviewed by FunTrivia editor
rossian before going online.
Any errors found in FunTrivia content are routinely corrected through our feedback system.